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A simplified method of ab initio calculation of electron 
states in relativistic magnetics: I. Ferromagnets 
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Physics-Technical Institute, Academy of Sciences of USSR, Ural Branch, Kirov Street 
132, SU-426001, Izhevsk, USSR 

Received 22 August 1989, in final form 2 May 1990 

Abstract. A variant of the technique of electron state calculation in a ferromagnet, based on 
derivation of the Dirac equation by the relativistic Korringa-Kohn-Rostoker method, is 
presented. Using the (Lp) representation allows one to retain the same structure of the 
dispersive matrix as in the absence of spin polarisation. 

1. Introduction 

The majority of works in which the electron structure of magnetics is calculated within 
the framework of the single-electron approximation are based on the non-relativistic 
Schrodinger equation (see e.g. [l]). With such an approach the exchange-correlation 
interaction in magnetics leads to the appearance of two different potentials for electrons 
with opposite spin orientation: V+ and V- .  Denoting 

(1) v =  :(v+ + v-) A V =  i ( v +  - v - )  

and choosing the z axis along the spin direction, one can write the initial quantum- 
mechanical equation as follows: 

[A + ( E  - V) + AVa,]li/ = 0 (2) 
(az is the Pauli matrix). The spin projection in this case remains a ‘good’ quantum 
number, system (2) is separated into two ordinary Schrodinger equations and the 
problem is reduced to the standard one. 

At the same time it is well known that the presence of even a slight spin-orbit 
interaction in materials with spin order leads to observable physical anomalies [2]. 
However, earlier, in all cases the spin-orbit interaction was taken into account according 
to perturbation theory either as an additional scattering mechanism or as a perturbation 
changing the selection rules. It would be desirable to construct a consequent theoretical 
scheme of calculation of the electron states in magnetics based on the Dirac equation. 
In recent years rather a great number of papers have been devoted to this problem; we 
refer to three of them [3-51, allowing one to appreciate the possibilities of the commonly 
used technique of calculating the energy bands based on the multiple scattering formal- 
ism. A number of recent papers [6-81 containing further development of this approach 
should be mentioned as well. 
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In the present work a variant of the technique of calculating the electron states in a 
relativistic ferromagnet based on the use of the Green function for an empty lattice is 
suggested. Our approach is most similar to the Korringa-Kohn-Rostoker (KKR) scheme 
[9-111 and its relativistic variant [12, 131. 

2. Problem recognition 

Consider the following equation 

where A, is the ordinary Dirac operator 

and the term A V i  provides the spin polarisation. Here 

(Ao + AV$)Y = CY 

A, = c&p + mc26 + vi 

(3) 

(4) 

a,, ay, a, are the Pauli matrices and l i s  the unit matrix. Atomic units with energy in Ryd 
are used, so that m = 1 and c = 274.072 . . . . 

As usual, we assume V and AV to have the muffin-tin (MT) form, which permits one 
to find the solution as a product of functions dependent on the modulus of r and angular- 
dependent ones. 

It is known that at AV = 0 the solution of equation (3) inside the MT sphere YI can 
be presented as an expansion in solutions of the same equation in a central-symmetric 
field with variational coefficients CK, [14]: 

Here K is a quantum number such that K = 1 if K > 0 and K = - ( I  + 1) if K < 0; qKP. are 
two-component spinors. Certainly, in the spherical-symmetric case the radial functions 
g andfdo not depend on p ,  but we shall retain this index for our subsequent work. 

Let now AV# 0. Then the symmetry of the problem changes: the moment-of- 
momentum projection on the z axis remains a preserved value (i.e. p is, as before, the 
quantum number) but the operator corresponding to K will no longer be the motion 
integral. Nevertheless, we shall find the solution of (3) inside the MT sphere again in the 
form of expansion (6). 

Let us substitute the sum (6) into (3), having replaced K by K ’ ,  perform the left 
multiplication of the expression obtained by the spinor (q:,, q:,) and integrate over 
the angles. This gives 

and 
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where E = E - mc2. One can see that the first equation relates the indices K and -K - 1, 
which correspond to one and the same I ;  the second equation connects the indices K and 
-K + 1 corresponding to I and 1 k 2 respectively. The last term in (7b) makes the system 
infinite and the task is substantially simplified if this term is neglected [4]. Note that 
following [4] in all the papers using the multiple scattering formalism this term has been 
neglected. Omitting it in (7a) and (76) and putting C, = Ci-l,v = we obviously 
obtain the same system of radial equations as in [4,5,8]. 

We shall omit the wholeaht -hand side of (76), which seems to be of more conse- 
quence, because the ratio I AV(/c2 where the averaging is performed through the MT 
sphere is a natural parameter of smallness. Indeed, A Vrepresents the difference between 
the exchange-correlation potentials, which in the Xa approximation, for example, is 
proportional to the difference pY3 - pY3 (pY3 is the density of electrons with a given 
spin): hence, IbVl /c2  4 1. 

In the majority of papers, starting with [4], further consideration has been given to 
the ( ~ p )  representation, which is traditional for relativistic problems, except for a recent 
paper [7], where a transition is made to the (lms) representation in the z (E)  matrix. 
Comparing tables 1 and 2 , 3  and 4 in [7] one can see that at this stage such a transition 
gives no practical advantages. Our consideration will be performed in the lms ( lp )  
representation right from the start. 

Before proceeding to the discussion proper, it seems necessary to mention that the 
list of references does not include many works on calculations of the electronic structure 
of ferromagnets in the relativistic case. Papers [3-51 are referred to as the fundamental 
ones being close to the scheme suggested by us. Papers [6,7] are devoted to further 
development of the theory and its applications. In [6] a technique of calculating the 
density of states is proposed, while in [7] is proposed a method of magnetic anisotropy 
calculation. An almost complete list of references along with necessary comments are 
available in [8]. 

3. General formalism 

Let us write an arbitrary four-component spinor as 

= 

and substitute it into (3). This results in the following system of equations: 
( ~ V ) ( C $ )  + [ E  - (V + A V G , ) ] ~  = 0 

E - V  AVO, ( a V ) q -  ) (c$)  = 0. 
C 2  

(9) 

Excluding the small component of $ and neglecting AV/c2 yields the equation for the 
large component: 
A V  + W [ E  - (V +  AVO,)]^ - (W’/W)(aP)(aV)q  = 0. (10) 

(11) 

Here P is the unit vector and 
W =  1 + ( E  - V)/C’. 

Let us further present the two-component spinor li, as a product of radial functions 
gc2 and spherical harmonics YIm defined according to [15]: 
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m = p - 1, m‘ = p + t (12) 
v, = (Rh- g/p- y / m  Y / m ,  1 

and substitute it into (10). After standard transformations with spherical functions one 
can make sure that the presentation (12) provides the partition of variables and results 
in the following system of equations for the radial factors: 

where sp = p/ l  p 1 .  This system has two linearly independent solutions regular at zero: 

g/v.1+ 7 g /p ,1 -  and g / p , 2 +  , g / p , 2 -  * (14) 
Thus the general solution of (10) inside the MT sphere can be presented as the expansion 

with arbitrary coefficients CIp,+. 
The standard variational procedure usually used in spectral problems is not effective 

in this case, the operator in (10) being similar to a Hamiltonian only in appearance. That 
is why we have realised the alternative possibility of finding the general solution of (10) 
outside the MT sphere and joining it smoothly to the solution VI through the MT sphere. 

Let us now write equation (10) for an empty lattice (V = A V  = O ) ,  which corresponds 
to the crystalline cell region outside the MT sphere: 

Av) + E’V = 0 (16) 
where E‘ = E(l + E/c*). The Green function corresponding to (16) is obviously pre- 
sented with a two-dimensional scalar matrix, its diagonal containing the Green function 
of the empty lattice [ll] 

1 exp[(k + K q ) ( r  - r ’ ) ]  G(k,  E’,r ,r’)  = --E 
Q q  ( I c + K , ) ~  - E ’  ‘ 

Here Q is the crystalline cell volume, k is a reduced wavevector and Kq are vectors of the 
reciprocal lattice. One can be convinced by direct substitution that the two-component 
vector function 

where @* are arbitrary functions, is the solution of (16), i.e. it represents the large 
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component of the solution outside the MT sphere. (It is appropriate to mention here that 
the Bloch conditions at the cell boundary are satisfied automatically due to (17).) 

Let us now use the known expansion of the Green function (17) in spherical harmonics 
[ll], substitute it into (18) and perform the integration. Then for vII we have 

11 = 2 i' [ A  /m , / ,m , j /  ( q r )  + 6 /m , I'm' / ( qr) I Y I m  { 'm f  (19) 
Ism. bFmr 
/ '3m '  

where 77 = V F ,  the constants b,& being represented by the integrals 

b h  = j / (qr ' )Ylm(f ' )Qt(r ' )  d r '  (20) 
Q MT 

and owing to the arbitrariness of they are arbitrary as well. Further, it is necessary 
to provide a smooth joining of solutions inside (15) and outside (19) the MT sphere on 
its surface, i.e. the following equalities should be satisfied: 

V I ( 4  = VII(4  

r, is the MT sphere radius. Tedious algebraic computations are carried over to appendix 
1. The resulting dispersive equation is written as follows: 

where A = A / m , / , m , ( k ,  E ' )  is the structure constant matrix, and Wss' = W ~ $ . J ~ , ( E )  are 
the matrices of scattering cotangents. The blocks W++ and W--  represent the diagonal 
matrices: 

The only elements different from zero those which belong to the diagonal lying over and 
under the main diagonal for W+- and W-+, respectively: 

1 [ g / p , l + g I p . 2 + 1  w&Jm, = - I / '  mm' r2 A, 

1 [ ~ l , . l - g l p . 2 - 1  

r2 A l p  
Wr;ntl"' = -- I/' mm' . 

(24) 

In (23) and (24) 

A l p  = U/g l , ,~+I [ j~g~~ ,~ - l  - [ j ~ g 1 ~ , 2 + I [ j ~ g 1 ~ . 1 - 1  

[ h l h 2 ]  = hlh; - h;h2. 

(25) 

(26) 

and the following designation is introduced: 

The non-hermiticity of the dispersive equation matrix (22) due to (24) is imaginary (see 
appendix 2). 
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So we see that the structure of the dispersive equation matrix (22) remains the same 
as in the absence of the spin polarisation [16]. The changes consist of: (i) the necessity 
of solving the system of two second-order equations (13) instead of one radial equation, 
(ii) the appearance of the p dependence of the solutions and (iii) the complication due 
to the form of the scattering terms. 

4. Limiting cases 

Before discussing the limiting cases that occur in the absence of spin polarisation 
(AV+ 0) or with neglect of relativistic effects (W'/W-, 0) we should analyse system 
(13). Since the potential affecting the electron near the nucleus always has a Coulomb 
singularity, the following asymptotic equalities hold: 

(Z is the nuclear charge). The asymptotic expressions for the radial functions at zero are 
given by 

gip,+ = ary-' g/p.- = brY-' (28) 

where y, a and b are arbitrary constants. Substituting (28) and (27) into (13) and grouping 
the terms with the minimum degree of r ,  we get a homogeneous system of algebraic 
equations in a and b. The condition for its solvability yields a characteristic equation for 
y having two positive roots: 

y1 = [ ( 1 +  1)2 - (2Z/c)2]'/2 

y2 = [12 - (2Z/c)2]'/2. 

(Negative values are impossible, as otherwise the requirement of the solutions gip, 
being regular at zero is not fulfilled.) The solutions of the algebraic system corresponding 
to (29) can be chosen in the form 

a1 = s p [ l  + p + 411'2 

a2 = S , [ l -  p + i]1/2 

bl = - [ 1 -  p + +I1/' 

b2 = [1+  p + h]1/2. 
(30) 

According to (30) it is convenient to introduce new radial functions GVF (v = 1,2 ,  the 
indices 1, p being omitted for the sake of brevity) 

In this notation the coordinate functions (12), in which the expansion has been 
performed, will differ from the solutions of the ordinary relativistic problem in the 
central field only by the indices 2 of the radial factors (see, for example, [17]). The 
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systems of radial equations for G,, are easily obtained from (13) by direct substitution. 
So for G,, we have 

1(1+ 1) 
r W(E - V + )  - ~ ) G I +  

W(E-V-)--)G1.. l( l+ 1) 
r r- 

= - W' [ ( G ; -  - - G I - )  I - ( E +  ,u + ;)-(Cl+ 1 - G I ) ] .  W r r 

A similar system for G2, can be obtained from (32) by substituting ( -1  - 1) for 1. 

independent of the spin 
If we now put AV = 0, i.e. V+ = V - ,  the systems considered will have solutions 

With the velocity of light tending to infinity (e+ =) one can set W = 1 and W / W  = 0; 
therefore, G1, and G2: could differ only by a constant factor 

G2, = const GI, .  (34) 

Let us now express the values Wyi,l,mf in (23) and (24) through G,? and sum up. The 
substitution of G,, into (23) yields 

It is more convenient to use instead of (24) the non-transformed expressions obtained 
from formulae (A1.5) and (A1.6) of appendix 1: 

where 
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In the absence of spin polarisation (AV = 0) we make use of relations (33), which 
results in 

One can proceed to the non-relativistic case (c- =), without any difficulties. Sub- 
stituting (34) into (35) and (36), we get 

Thus the dispersive equation (22) obtained in this paper includes as limiting cases 
both the dispersive equation of the standard relativistic Green function method (RKKR) 
[16,18] and the two dispersive equations of the non-relativistic spin-polarised technique. 
This is, so far, the main argument for the approximation made. 

5. Conclusions 

To conclude we shall make some remarks. 
The derivation of the main dispersive equation by means of continuous prolongation 

of the solutions through the MT sphere into the outer part of the Wigner-Seitz cell can 
be performed in the ( ~ p )  representation using the relativistic Green function. Following 
such a procedure the ordinary relativistic structure constants are included in the elements 
of the dispersive equation matrix, the form of the diagonal scattering terms getting 
complicated and the non-diagonal scattering terms appearing at the same positions as 
in the t-matrix of [5]. Unfortunately, we failed to compare the corresponding expressions 
analytically, and the numerical values of f K p , K , p  are not presented in 1-51. Besides, a 
comparison of numerical values would make sense only with absolutely identical 
potentials. 

Since the presence of spin polarisation makes the scattering matrix in the ( ~ p )  
representation non-diagonal, the ( ~ p )  and (Ims) representations are equivalent in this 
case. Moreover, using the (Zms) representation allows one to retain the same structure 
of the dispersive matrix as in the absence of spin polarisation. 

Both forms of the dispersive equation are interconnected in the same way as without 
the spin polarisation [lo] through the Clebsch-Gordan coefficients. 

The form of radial equations (13) and dispersive equation (22) permits a rather 
simple development of the perturbation theory for the eigenvalues of matrix (22) with 
respect to both the spin polarisation parameter AV and the ratio W’/W responsible for 
relativistic effects. This, in turn, allows one to estimate the variation of the electron 
energy eigenvalues for small AV and W‘/W. We shall probably consider this point in a 
following paper. 
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Appendix 1 

Let us substitute expansions (15) and (19) into (21) and make use of the orthogonality 
of spherical harmonics. For each ( l p )  this will result in two pairs of algebraic equations 
in coefficients CIP,+ (hereafter the indices ( l p )  of C and g will be omitted): 

and 

with m = p - t and m' = p + 4. Now expressing C, from each pair of equations and 
equating appropriate expressions, we obtain the infinite homogeneous system of 
algebraic equations in coefficients b& : 

(Al.2) 

where the designation 

[hlhz]  = hlh;  - h[h2  (A1.3) 

is introduced and the equation 

k1+g2+1 = -[g1-g2-1 (A1.4) 

is used. (The latter is proved in appendix 2.) 
In order to exclude the structure constants A/m,,/,,mr, from (A1.2) we multiply the first 

equation by [ j l g 2 - ] ,  the second one by [ j l g l - ]  and subtract the second from the first. 
This yields: 

~ { ~ / m , / , , m , , ( [ j / g 1 + 1  ~ l g 2 - 1  - [i /g1-1 [j/g2+1> 
1 " , m" 

(A1.5) 
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(m' is replaced by m + 1) .  Similarly, excluding A/m,,t,mst, substituting m for m' - 1 and 
redenoting m' by m, we have 

Appendix 2 

The coincidence of the matrix elements W,&;l,m+l and W&>,m-l can be demonstrated 
straightforwardly. Indeed, 

[n/gl-l[j/g2-1 - [j/gl-l[nlg2-1 = nJ;gl-g;- - n;jrgl-g;- + jdgLg2-  
- n&-g2- = [ n d  [gl-g2-1. (A2.1) 

[jlgl+l[n/g2+1 - [Wl+l[j/g2+1 = -[nli/l[gl+g2+1* (A2.2) 

The coincidence of the right-hand sides of (A2.1) and (A2.2) can be proved using 
the radial equations (13). Since gl+ and g2+ are the solutions of the first of them, the 
following equations are satisfied: 

Similarly, 

W ( E  - V + )  - - 

Multiplying the first equation by g2+ , the second one by gl+ and subtracting the first from 
the second yields 

2 W' 
(g1+gi+ - g;'+g2+> + ; kl+&+ - g[+g2+) - w (gl+g;+ - g!+g2+) 

Hence, 

g1+g;+ - g;+g2+ = s ,[( l+ p + 1)(Z - p + i)]l'* - ).2 &g1+g2- "Jar 

(A2.4) 

(A2.5) 
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And, similarly, 

g1-g;- - g ; - g 2 -  

= -s,[(l+ p + 1)(1 - p + 2)]"* - r 2  &g1+g2- "lb (A2.6) 

- gI-&+)rdr. 
It is from the last two expressions that the equality of the right-hand sides of (A2.1) and 
(A2.2) as well as the validity of (A1.4) follow. 
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